RSS Feed for Năng lượng Nhật Bản [Kỳ 22]: Kiểm chứng tính an toàn lò phản ứng khí nhiệt độ cao | Tạp chí Năng lượng Việt Nam Thứ tư 25/05/2022 19:50
TRANG TTĐT CỦA TẠP CHÍ NĂNG LƯỢNG VIỆT NAM

Năng lượng Nhật Bản [Kỳ 22]: Kiểm chứng tính an toàn lò phản ứng khí nhiệt độ cao

 - Ngày 28/1, Cơ quan Năng lượng Nguyên tử Nhật Bản (JAEA) phối hợp với Cơ quan Năng lượng Hạt nhân (OECD/NEA) thuộc Tổ chức Hợp tác và Phát triển Kinh tế đã tiến hành thử nghiệm kiểm chứng tính an toàn của Lò phản ứng thử nghiệm kỹ thuật nhiệt độ cao "HTTR" (Thị trấn Oarai, tỉnh Ibaraki, Công suất nhiệt 30.000 kW). HTTR là Lò phản ứng khí nhiệt độ cao có hiệu suất cao nhất thế giới. Qua thử nghiệm với máy thực tế đã chứng minh rằng ngay cả khi mất hết nguồn điện trong quá trình hoạt động, nó vẫn tự nhiên dừng lại mà không cần thao tác của người vận hành và không dẫn đến tai nạn như tan chảy lõi lò.
Năng lượng Nhật Bản [Kỳ 21]: Xu hướng phát triển công nghệ điện hạt nhân Năng lượng Nhật Bản [Kỳ 21]: Xu hướng phát triển công nghệ điện hạt nhân

Công ty Năng lượng Nguyên tử Hitachi GE - một liên doanh về năng lượng nguyên tử giữa Hitachi và General Electric (GE) thông báo: Vào tháng 12/2021, họ đã nhận được đơn đặt hàng cho “lò phản ứng hạt nhân mô-đun nhỏ (SMR)” thế hệ tiếp theo của Canada. Đây là đơn đặt hàng đầu tiên cho một lò phản ứng hạt nhân thương mại nhỏ của Nhật Bản. Lò nhỏ hơn so với lò của các nhà máy điện hạt nhân hiện có, và về mặt lý thuyết, nó an toàn hơn. Khi xu hướng khử carbon gia tăng, xuất khẩu công nghệ điện hạt nhân của Nhật Bản sẽ được tiếp tục.

Năng lượng Nhật Bản [Kỳ 20]: Tình hình tái khởi động các nhà máy điện hạt nhân Năng lượng Nhật Bản [Kỳ 20]: Tình hình tái khởi động các nhà máy điện hạt nhân

Năm 2021, tổ máy số 3 của Nhà máy điện hạt nhân Mihama của Công ty Điện lực Kansai đã khởi động lại (tháng 6) đây là tổ máy đầu tiên trên toàn quốc khởi động lại khi có trên 40 năm vận hành, cũng là tổ máy thứ 10 (với tổng công suất 9,956 triệu kW) được tái khởi động lại sau sự cố Fukushima.

Năng lượng Nhật Bản [Kỳ 19]: Cảnh báo rủi ro cung cầu điện mùa đông Năng lượng Nhật Bản [Kỳ 19]: Cảnh báo rủi ro cung cầu điện mùa đông

Khi nhu cầu sử dụng điện tăng lên do sưởi ấm vào mùa đông, các công ty điện lực Nhật Bản đã cảnh báo tình trạng căng thẳng cung cầu. Mùa đông năm ngoái, do lạnh giá và tình trạng thiếu hụt nhiên liệu đã gây ra tình trạng nghiêm trọng trong cung cầu điện, đặc biệt là ở phía Tây Nhật Bản. Thời tiết lạnh khắc nghiệt cũng được dự báo trong mùa đông năm nay và các công ty đang gấp rút chuẩn bị để có nguồn cung ổn định, chẳng hạn như tăng tồn kho khí tự nhiên hóa lỏng (LNG) và khởi động lại các nhà máy nhiệt điện đã cũ.

Năng lượng Nhật Bản [Kỳ 18]: Giải quyết những bất ổn của năng lượng tái tạo Năng lượng Nhật Bản [Kỳ 18]: Giải quyết những bất ổn của năng lượng tái tạo

Trong số các loại năng lượng tái tạo, năng lượng gió, mặt trời có điểm yếu là sản lượng điện phụ thuộc vào thời tiết và khó kiểm soát. Vì vậy, “ắc quy lưu trữ” được kỳ vọng như một thiết bị giải quyết vấn đề mất ổn định của năng lượng tái tạo.

Năng lượng Nhật Bản [Kỳ 17]: Thách thức điện gió ngoài khơi Năng lượng Nhật Bản [Kỳ 17]: Thách thức điện gió ngoài khơi

Hiện nay, trung tâm của năng lượng tái tạo ở Nhật Bản là “điện mặt trời”. Tuy nhiên, nhìn ra thế giới, “điện gió” mới là trung tâm. Công suất lắp đặt của điện gió trên quy mô toàn cầu là khoảng 486 GW (tính đến cuối năm 2020). Mặt khác, sản lượng điện mặt trời khoảng 227 GW - tức là chưa bằng một nửa. Liệu điện gió có mở rộng ở Nhật Bản trong tương lai?

Năng lượng Nhật Bản [Kỳ 16]: ‘Điện hạt nhân châu Âu’ trên báo Nhật Năng lượng Nhật Bản [Kỳ 16]: ‘Điện hạt nhân châu Âu’ trên báo Nhật

Hội nghị lần thứ 26 các bên tham gia Công ước khung về biến đổi khí hậu của Liên hợp quốc (COP26) đã khai mạc ngày 31/10 tại Glasgow, Anh. Trong bối cảnh này, không có dấu hiệu nào cho thấy “cuộc khủng hoảng năng lượng” do giá khí đốt tự nhiên và giá điện tăng sẽ được giảm bớt ở châu Âu.

Năng lượng Nhật Bản [Kỳ 15]: Phong trào điện hạt nhân thế giới và động thái Hoa Kỳ Năng lượng Nhật Bản [Kỳ 15]: Phong trào điện hạt nhân thế giới và động thái Hoa Kỳ

Trong lúc năng lượng tái tạo được mở rộng như một biện pháp chống lại biến đổi khí hậu, thì tầm quan trọng của việc không thải ra carbon dioxide (CO2) trong quá trình sản xuất điện của điện hạt nhân đang được xem lại.

Năng lượng Nhật Bản [Kỳ 14]: Nhìn nhận của người Nhật về nguy cơ thiếu điện ở châu Âu Năng lượng Nhật Bản [Kỳ 14]: Nhìn nhận của người Nhật về nguy cơ thiếu điện ở châu Âu

Giá năng lượng tăng vọt ở châu Âu vừa qua đã phần nào cho chúng ta thấy chuyển dịch năng lượng nhằm chống biến đổi khí hậu tuy là xu thế tất yếu, nhưng nếu “giục tốc”, vội vã dựa chủ yếu vào các nguồn năng lượng tái tạo biến đổi như gió và mặt trời, khi chưa tạo đủ mức độ an ninh cung cấp năng lượng bằng các nguồn truyền thống ổn định, sẽ gây rủi ro cho chính nền kinh tế và người dân của mình. “Tác dụng phụ” của các biện pháp chống biến đổi khí hậu sẽ không hề nhẹ.

Năng lượng Nhật Bản [Kỳ 13]: Có thể ngăn được đứt gãy cung, cầu nguồn tài nguyên? Năng lượng Nhật Bản [Kỳ 13]: Có thể ngăn được đứt gãy cung, cầu nguồn tài nguyên?

Nhiều nước phát triển ở châu Âu và Mỹ đang giảm dần đầu tư vào khai thác tài nguyên (dầu mỏ, khí đốt tự nhiên). Điều này để nhằm đạt được mức giảm phát thải khí nhà kính “cơ bản về không” vào năm 2050. Tuy nhiên, vẫn chưa rõ liệu năng lượng tái tạo có phát triển theo kịch bản của các quốc gia hay không. Trong quá trình tiến tới không carbon, có nguy cơ các nguồn tài nguyên hiện có sẽ thiếu hụt và cung - cầu năng lượng sẽ bị gián đoạn. Thế giới đang phải chịu áp lực: Làm sao đầu tư nhưng vẫn giữ được cân bằng?

Năng lượng Nhật Bản [Kỳ 12]: Động thái của thế giới và Nhật Bản đối với LNG Năng lượng Nhật Bản [Kỳ 12]: Động thái của thế giới và Nhật Bản đối với LNG

Trước Hội nghị thượng đỉnh Liên hợp quốc về Biến đổi khí hậu (COP26) dự kiến ​​được tổ chức tại Glasgow (Anh) vào tháng 11 năm nay, các nhà hoạt động liên quan đến vấn đề nóng lên toàn cầu vốn đang hạn chế hoạt động do vi rút Corona đã hoạt động sôi nổi trở lại. Mục tiêu của họ là chuyển từ phản đối than đá sang phản đối khí thiên nhiên. Nhưng nếu phát sinh vấn đề trong cung cấp nhiên liệu hóa thạch, Nhật Bản sẽ sớm đứng trước nguy cơ thiếu điện.

Năng lượng Nhật Bản [Kỳ 11]: Thách thức chứng thực ‘Hydro xanh’ thương mại Năng lượng Nhật Bản [Kỳ 11]: Thách thức chứng thực ‘Hydro xanh’ thương mại

Trong khi các quốc gia trên thế giới coi năng lượng Hydro là một lựa chọn quan trọng để trung hòa Carbon, thì Nhật Bản cũng đang mở rộng đầu tư vào lĩnh vực này. Nhật Bản đang đi trước các quốc gia khác về mặt công nghệ trong việc sử dụng Hydro, nhưng câu hỏi đặt ra là liệu quốc gia này có thể tận dụng ưu thế này hay không?

Năng lượng Nhật Bản [Kỳ 10]: Chi phí phát điện của các nguồn điện năm 2030 Năng lượng Nhật Bản [Kỳ 10]: Chi phí phát điện của các nguồn điện năm 2030

Nhóm công tác kiểm tra chi phí phát điện (thuộc Nhóm nghiên cứu tài nguyên năng lượng toàn diện - Văn phòng Bộ Kinh tế, Thương mại và Công nghiệp Nhật Bản - METI) đã tóm tắt kết quả tạm tính chi phí phát điện của từng nguồn điện của Nhật Bản vào thời điểm năm 2020 và 2030. Điểm đáng chú ý là về chi phí sản xuất điện năm 2030 của Nhật Bản trong kết quả tạm tính lần này, chi phí cận biên của từng nguồn điện đã được thêm vào làm giá trị tham khảo.

Năng lượng Nhật Bản [Kỳ 9]: Dự thảo Kế hoạch ‘năng lượng cơ bản’ có khả thi? Năng lượng Nhật Bản [Kỳ 9]: Dự thảo Kế hoạch ‘năng lượng cơ bản’ có khả thi?

Cuối tháng 7 vừa qua, Bộ Kinh tế, Thương mại và Công nghiệp Nhật Bản (METI) đã tóm tắt Dự thảo Kế hoạch năng lượng cơ bản (lần thứ 6) - đây là phương châm chính sách năng lượng của Chính phủ. Nhưng câu hỏi đặt ra là: Những kế hoạch năng lượng cơ bản trong trung, dài hạn của quốc gia này có khả thi?

Năng lượng Nhật Bản [Kỳ 8]: Điện than ‘công nghệ mới nhất’ cũng gặp khó Năng lượng Nhật Bản [Kỳ 8]: Điện than ‘công nghệ mới nhất’ cũng gặp khó

Hội nghị thượng đỉnh 7 nước có nền công nghiệp hàng đầu thế giới (Hội nghị thượng đỉnh G7) được tổ chức tại Anh (từ ngày 11 - 13/6). Để ứng phó với biến đổi khí hậu, các nước đã nhất trí trong năm nay sẽ chấm dứt hỗ trợ xuất khẩu mới của chính phủ đối với nhiệt điện than - nguồn điện không thể thực hiện được các biện pháp giảm phát thải khí nhà kính. Bộ Kinh tế, Thương mại và Công nghiệp Nhật Bản (METI) vốn thể hiện rõ quan điểm tiếp tục hỗ trợ xuất khẩu đã buộc phải thay đổi chính sách chỉ trong 3 tuần.

Năng lượng Nhật Bản [Kỳ 7]: Cập nhật diễn tiến tái khởi động điện hạt nhân Năng lượng Nhật Bản [Kỳ 7]: Cập nhật diễn tiến tái khởi động điện hạt nhân

Công ty Điện lực Kansai đã tái khởi động lò phản ứng số 3 hơn 40 năm tuổi của Nhà máy điện hạt nhân Mihama (ngày 23/6/2021). Sau sự cố Nhà máy điện hạt nhân Fukushima số 1 thuộc Công ty Điện lực Tokyo (TEPCO) năm 2011, thời gian vận hành tối đa của một lò phản ứng hạt nhân được quy định là 40 năm. Do đó, đây là lò phản ứng trên 40 năm tuổi đầu tiên của Nhật Bản được tái khởi động kể từ khi ban hành quy định này. Cho đến nay, đã có 10 lò phản ứng hạt nhân được tái khởi động kể từ sau sự cố Fukushima và tất cả đều là lò PWR.

Năng lượng Nhật Bản [Kỳ 6]: Xu hướng của điện hạt nhân Năng lượng Nhật Bản [Kỳ 6]: Xu hướng của điện hạt nhân

Để đạt được mục tiêu mới năm 2030 giảm 46% khí nhà kính so với năm 2013, đã đến lúc Nhật Bản đối diện trực tiếp với các vấn đề liên quan đến điện hạt nhân. Theo mục tiêu hiện tại của quốc gia này, năm 2030 điện hạt nhân dự kiến sẽ chiếm khoảng 20% tổng sản lượng điện. Để đạt được mục tiêu này, cần tái khởi động khoảng 30 lò phản ứng hạt nhân. Tuy nhiên, hiện tại, ngoài 3 lò đang xây dựng, Nhật Bản chỉ còn 33 lò phản ứng hạt nhân.

Năng lượng Nhật Bản [Kỳ 5]: Thách thức giảm phát thải carbon Năng lượng Nhật Bản [Kỳ 5]: Thách thức giảm phát thải carbon

Mặc dù không được biết đến nhiều, nhưng Nhật Bản có công suất (dự kiến) điện mặt trời tương ứng với diện tích lãnh thổ lớn nhất trong các quốc gia có nền công nghiệp hàng đầu thế giới (vị trí số 2 là Đức và vị trí số 3 là Anh). Tuy là đất nước có nhiều vùng núi và khá ít diện tích đồng bằng, nhưng nếu so sánh về công suất dự kiến điện mặt trời tương ứng với diện tích đồng bằng, Nhật Bản với vị trí số 1 đang gấp hơn 2 lần Đức ở vị trí số 2.

Năng lượng Nhật Bản [Kỳ 4]: Tái khởi động nhà máy điện hạt nhân U40 Năng lượng Nhật Bản [Kỳ 4]: Tái khởi động nhà máy điện hạt nhân U40

Cuối tháng Năm vừa qua, Thống đốc tỉnh Fukui đã tuyên bố đồng ý tái khởi động 3 tổ máy điện hạt nhân đã vận hành trên 40 năm, gồm tổ máy số 1, 2 của Nhà máy điện hạt nhân Takahama và tổ máy số 3 của Nhà máy điện hạt nhân Mihama, thuộc Công ty Điện lực Kansai.

Năng lượng Nhật Bản [Kỳ 3]: Vấn đề xử lý nước thải tại Fukushima số 1 Năng lượng Nhật Bản [Kỳ 3]: Vấn đề xử lý nước thải tại Fukushima số 1

Đã 10 năm trôi qua (kể từ khi xảy ra sự cố Nhà máy điện hạt nhân Fukushima số 1), cuối cùng, Chính phủ Nhật Bản đã cho phép xả nước đã qua xử lý đang lưu trữ ở Nhà máy này ra biển.

Năng lượng Nhật Bản [Kỳ 2]: Nhìn lại 10 năm sau sự cố Fukushima Năng lượng Nhật Bản [Kỳ 2]: Nhìn lại 10 năm sau sự cố Fukushima

Tháng 3/2021 vừa qua tròn 10 năm kể từ sự cố Nhà máy điện hạt nhân Fukushima số 1 của Công ty Điện lực Tokyo (TEPCO). Trong khoảng thời gian đó, Nhật Bản đã quyết định ngừng hoạt động tất cả các nhà máy điện hạt nhân. Cho đến hiện nay, chỉ có 9 lò phản ứng hạt nhân được tái khởi động lại. Nhật Bản lần đầu tiên trải qua thảm họa hạt nhân lớn như vậy, do đó cần thời gian xem xét lại các quy định. Ngoài ra, yêu cầu ứng phó sự cố cũng có sự thay đổi, nên việc tái khởi động các lò phản ứng còn lại sẽ mất thêm thời gian.

Năng lượng Nhật Bản [Kỳ 1]: Thiếu điện và những thách thức trong cơ cấu nguồn điện Năng lượng Nhật Bản [Kỳ 1]: Thiếu điện và những thách thức trong cơ cấu nguồn điện

Ở Nhật Bản, sự sụt giảm đột ngột của điện hạt nhân và xu hướng giảm dần sự phụ thuộc vào nhiệt điện đã mở ra cơ hội cho năng lượng tái tạo. Trong 10 năm qua, tỷ trọng của nguồn năng lượng tái tạo đã tăng gần gấp đôi, từ 9,5% vào năm 2010 lên 18% vào năm 2020. Tuy nhiên, từ ngày 7/1/2021, Nhật Bản đã bắt đầu xảy ra tình trạng thiếu hụt điện trên toàn quốc. Liên đoàn các Công ty Điện lực Nhật Bản (FEPC) đã thông báo 2 lần vào ngày 10 và 12/1 về "Tình hình cung cầu điện và đề nghị tiết kiệm điện" tại quốc gia này. Vậy, vấn đề gì đã xảy ra ở Nhật Bản? Dưới đây, chúng tôi giới thiệu nội dung phân tích của JENED về tình trạng trên để bạn đọc và các nhà quản lý, nhà đầu tư tham khảo.


Thí nghiệm kiểm chứng tính an toàn:

Thí nghiệm được thực hiện trong điều kiện khắc nghiệt tương đương với sự mất toàn bộ công suất, thông qua việc cho ngừng tuần hoàn chất làm mát và khí heli. Phản ứng của HTTR đã diễn ra đúng như dự kiến. Chỉ với chức năng an toàn duy nhất của Lò phản ứng khí nhiệt độ cao, lò phản ứng đã tự động tắt mà không cần sử dụng thanh điều khiển và quá trình làm mát tự nhiên cho lõi lò được tiến hành.

Trong vụ tai nạn tại Nhà máy điện hạt nhân Fukushima Daiichi của TEPCO, lõi lò bị tan chảy do mất hết nguồn điện và một khu vực rộng lớn bị nhiễm phóng xạ. Tuy nhiên, ở Lò phản ứng khí nhiệt độ cao, cho dù gặp phải tai nạn tương tự như Nhà máy điện hạt nhân Fukushima Daiichi thì cũng không xảy ra tình trạng như vậy. Nó đã được xác nhận lại không chỉ trên lý thuyết mà còn trong các thử nghiệm sử dụng HTTR.

Sự phát triển Lò phản ứng khí nhiệt độ cao của Nhật Bản đang đi đầu trên thế giới. Trung Quốc cũng đang phát triển một loại lò phản ứng khí nhiệt độ cao khác, nhưng HTTR là lò đầu tiên trên thế giới thực hiện thử nghiệm xác minh độ an toàn với mức như thử nghiệm như lần này.

Trong tháng 3/2022 sẽ thực hiện thử nghiệm kiểm chứng công suất lò phản ứng sẽ được tăng từ 30% (lần này) lên 100%. Kế hoạch này sẽ tăng cường dữ liệu và làm cho Lò phản ứng khí nhiệt độ cao được công nhận rộng rãi trong và ngoài nước như một Lò phản ứng không xảy ra tai nạn lớn.

Tính an toàn của HTTR:

Các hạt nhiên liệu có đường kính 1 mm sử dụng trong nhiên liệu HTTR được phủ bằng gốm sứ và chịu được nhiệt độ 1.600 độ. Các hạt nhiên liệu cấu tạo bốn lớp giữ chặt phóng xạ bên trong và không cho thoát ra ngoài.

Than chì cấu tạo nên lõi có nhiệt dung lớn. Ngay cả khi có bất thường xảy ra, nhiệt độ của lõi sẽ tăng từ từ và nhiệt lượng này sẽ được tản ra từ bề mặt của Lò phản ứng ra bên ngoài. Ngoài ra, Lò phản ứng khí ở nhiệt độ cao có "tính an toàn nội tại".

An toàn nội tại là chức năng ngăn chặn các bất thường bằng cơ chế vật lý của chính hệ thống mà không cần tác động từ bên ngoài khi tình huống nguy hiểm xảy ra. Trong Lò phản ứng khí ở nhiệt độ cao, nếu ống dẫn khí heli bị vỡ và nhiệt độ lõi tăng lên bất thường, phản ứng phân hạch sẽ dừng lại mà không cần đưa các thanh điều khiển vào. Nhiệt độ cao sinh ra trong tâm lò sẽ được hấp thụ bởi than chì là phần cấu tạo có nhiệt dung lớn của lõi lò. Nhiệt sẽ được giải phóng vào khí quyển và quá trình tắt lạnh được thực hiện.

Ba yêu cầu "dừng", "làm lạnh" và "giam giữ" trong trường hợp xảy ra sự cố hạt nhân thì trong Lò phản ứng khí nhiệt độ cao đều đạt được thông qua các hiện tượng vật lý mà không cần có sự can thiệp của con người.

Tính ưu việt của HTTR:

Ngoài ra, JAEA sẽ bắt đầu thiết kế cơ sở sản xuất hydro tận dụng nhiệt độ cao gần 1.000 độ C của HTTR từ năm 2022. Kế hoạch đầu tiên là sản xuất hydro từ khí tự nhiên, giai đoạn tiếp theo chỉ sử dụng iốt, lưu huỳnh và nước để sản xuất khối lượng lớn hydro mà không tạo ra carbon dioxide.

Năng lượng Nhật Bản [Kỳ 22]: Kiểm chứng tính an toàn lò phản ứng khí nhiệt độ cao

Lò phản ứng khí nhiệt độ cao sử dụng than chì làm "chất làm chậm" tạo điều kiện thuận lợi cho phản ứng phân hạch của nhiên liệu uranium, và dùng khí heli làm "chất làm mát" để tải nhiệt sinh ra trong quá trình phân hạch.

Trong Lò phản ứng nước nhẹ, hơi nước có nhiệt độ khoảng 300 độ được sử dụng để phát điện, nhưng trong Lò phản ứng khí ở nhiệt độ cao, khí heli đạt khoảng 1.000 độ, và quá trình phát điện tua bin khí hiệu suất nhiệt cao được thực hiện đồng thời tạo ra hydro. Nó cũng mở đường cho quá trình sản xuất thép hydro khử cacbon.

Một tính năng nổi bật nữa của Lò phản ứng khí nhiệt độ cao là chúng cũng có thể được sử dụng làm nguồn nhiệt sử dụng trong công nghiệp hay sưởi ấm cho khu vực.

Trong giai đoạn thực nghiệm Lò phản ứng khí nhiệt độ cao cho thấy đây là nguồn năng lượng khử cacbon chính yếu vì nó vừa phát điện vừa thu được hydro xanh. Hơn nữa, Lò còn có khả năng hấp thụ biến động công suất - là nhược điểm cố hữu của năng lượng tái tạo như điện mặt trời. Do đó, tỷ lệ phát nhiệt điện có thể được giảm bớt.

Mặc dù sản xuất điện hạt nhân thông thường rất thuận tiện, nhưng vẫn còn có những lo ngại về nguy cơ trong trường hợp xảy ra các tai nạn lớn, đây là một trong những nguyên nhân gây ra sự chậm trễ trong việc tái khởi động ở Nhật Bản. Trong hoàn cảnh đó, an toàn mang tính đột phá của Lò phản ứng khí nhiệt độ cao đã được kiểm chứng. Hy vọng rằng nhà nước sẽ tập trung nguồn lực để đẩy nhanh sự phát triển các lò phản ứng trong thực tế. Điều này cũng sẽ dẫn đến phát triển nguồn nhân lực trong lĩnh vực điện hạt nhân.

(Đón đọc kỳ tới...)

NGUYỄN HOÀNG YẾN (TỔNG HỢP, BIÊN DỊCH)

Có thể bạn quan tâm

Các bài mới đăng

Các bài đã đăng

[Xem thêm]
Phiên bản di động